Neural Networks Efficiently Learn Low-Dimensional Representations with SGDDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Apr 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: feature learning, generalization, compressibility, sgd, neural networks
TL;DR: We prove that SGD on neural networks can learn low-dimensional features in certain settings, and use this to derive novel generalization and excess risk bounds.
Abstract: We study the problem of training a two-layer neural network (NN) of arbitrary width using stochastic gradient descent (SGD) where the input $\boldsymbol{x}\in \mathbb{R}^d$ is Gaussian and the target $y \in \mathbb{R}$ follows a multiple-index model, i.e., $y=g(\langle\boldsymbol{u_1},\boldsymbol{x}\rangle,...,\langle\boldsymbol{u_k},\boldsymbol{x}\rangle)$ with a noisy link function $g$. We prove that the first-layer weights in the NN converge to the $k$-dimensional principal subspace spanned by the vectors $\boldsymbol{u_1},...,\boldsymbol{u_k}$ of the true model, when online SGD with weight decay is used for training. This phenomenon has several important consequences when $k \ll d$. First, by employing uniform convergence on this smaller subspace, we establish a generalization error bound of $\mathcal{O}(\sqrt{{kd}/{T}})$ after $T$ iterations of SGD, which is independent of the width of the NN. We further demonstrate that, by recovering the principal direction, SGD-trained ReLU NNs can learn a single-index target of the form $y=f(\langle\boldsymbol{u},\boldsymbol{x}\rangle) + \epsilon$ with a sample complexity linear in $d$ (up to log factors), where $f$ is a monotonic function with at most polynomial growth, and $\epsilon$ is the noise. This is in contrast to the known $d^{\Omega(p)}$ samples required to learn any degree $p$ polynomial in the kernel regime, and shows that SGD-trained NNs can outperform the Neural Tangent Kernel at initialization. Finally, we establish compressibility guarantees for NNs using that SGD produces an approximately rank-$k$ first-layer weight matrix.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
9 Replies

Loading