Keywords: Blind Video Quality Assessment, Large Multimodal Model
TL;DR: We propose a weak-to-strong learning paradigm to construct a generalized video quality assessment model.
Abstract: Video quality assessment (VQA) seeks to predict the perceptual quality of a video in alignment with human visual perception, serving as a fundamental tool for quantifying quality degradation across video processing workflows. The dominant VQA paradigm relies on supervised training with human-labeled datasets, which, despite substantial progress, still suffers from poor generalization to unseen video content. Moreover, its reliance on human annotations---which are labor-intensive and costly---makes it difficult to scale datasets for improving model generalization. In this work, we explore weak-to-strong (W2S) learning as a new paradigm for advancing VQA without reliance on large-scale human-labeled datasets. We first provide empirical evidence that a straightforward W2S strategy allows a strong student model to not only match its weak teacher on in-domain benchmarks but also surpass it on out-of-distribution (OOD) benchmarks, revealing a distinct weak-to-strong effect in VQA. Building on this insight, we propose a novel framework that enhances W2S learning from two aspects: (1) integrating homogeneous and heterogeneous supervision signals from diverse VQA teachers—including off-the-shelf VQA models and synthetic distortion simulators—via a learn-to-rank formulation, and (2) iterative W2S training, where each strong student is recycled as the teacher in subsequent cycles, progressively focusing on challenging cases. Extensive experiments show that our method achieves state-of-the-art results across both in-domain and OOD benchmarks, with especially strong gains in OOD scenarios. Our findings highlight W2S learning as a principled route to break annotation barriers and achieve scalable generalization in VQA, with implications extending to broader alignment and evaluation tasks.
Supplementary Material: pdf
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 4355
Loading