Emotions Where Art Thou: Understanding and Characterizing the Emotional Latent Space of Large Language Models

ICLR 2026 Conference Submission14451 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: emotions, latent space
Abstract: This work investigates how large language models (LLMs) internally represent emotion by analyzing the geometry of their hidden-state space. Using a synthetic dataset of emotionally rewritten sentences, we identify a low-dimensional emotional manifold via singular value decomposition and show that emotional representations are directionally encoded, distributed across layers, and aligned with interpretable dimensions. These structures are stable across depth and generalize to eight real-world emotion datasets spanning five languages. Cross-domain alignment yields low error and strong linear probe performance, indicating a universal emotional subspace. Within this space, internal emotion perception can be steered while preserving semantics using a learned intervention module, with especially strong control for basic emotions across languages. These findings reveal a consistent and manipulable affective geometry in LLMs and offer insight into how they internalize and process emotion.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Submission Number: 14451
Loading