How to Learn and Generalize From Three Minutes of Data: Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential EquationsDownload PDF

Published: 30 Aug 2023, Last Modified: 15 Oct 2023CoRL 2023 OralReaders: Everyone
Keywords: Neural SDE, Physics-Informed Learning, Data-Driven Modeling, Dynamical Systems, Control, Model-Based Reinforcement Learning
TL;DR: We use neural SDEs to learn uncertainty-aware, data-driven models that leverage a priori physics knowledge.
Abstract: We present a framework and algorithms to learn controlled dynamics models using neural stochastic differential equations (SDEs)---SDEs whose drift and diffusion terms are both parametrized by neural networks. We construct the drift term to leverage a priori physics knowledge as inductive bias, and we design the diffusion term to represent a distance-aware estimate of the uncertainty in the learned model's predictions---it matches the system's underlying stochasticity when evaluated on states near those from the training dataset, and it predicts highly stochastic dynamics when evaluated on states beyond the training regime. The proposed neural SDEs can be evaluated quickly enough for use in model predictive control algorithms, or they can be used as simulators for model-based reinforcement learning. Furthermore, they make accurate predictions over long time horizons, even when trained on small datasets that cover limited regions of the state space. We demonstrate these capabilities through experiments on simulated robotic systems, as well as by using them to model and control a hexacopter's flight dynamics: A neural SDE trained using only three minutes of manually collected flight data results in a model-based control policy that accurately tracks aggressive trajectories that push the hexacopter's velocity and Euler angles to nearly double the maximum values observed in the training dataset.
Student First Author: yes
Supplementary Material: zip
Instructions: I have read the instructions for authors (https://corl2023.org/instructions-for-authors/)
Video: https://tinyurl.com/29xr5vya
Code: https://github.com/wuwushrek/sde4mbrl
Publication Agreement: pdf
Poster Spotlight Video: mp4
9 Replies

Loading