Abstract: Dedicated neural network (NN) architectures have been designed to handle specific data types (such as CNN for images or RNN for text), which ranks them among state-of-the-art methods for dealing with these data. Unfortunately, no architecture has been found for dealing with tabular data yet, for which tree ensemble methods (tree boosting, random forests) usually show the best predictive performances. In this work, we propose a new sparse initialization technique for (potentially deep) multilayer perceptrons (MLP): we first train a tree-based procedure to detect feature interactions and use the resulting information to initialize the network, which is subsequently trained via standard gradient descent (GD) strategies. Numerical experiments on several tabular data sets showthe benefits of this new, simple and easy-to-use method, both in terms of generalization capacity and computation time, compared to default MLP initialization and even to existing complex deep learning solutions. In fact, this wise MLP initialization raises the performances of the resulting NN methods to that of gradient boosting on tabular data. Besides, such initializations are able to preserve the sparsity of weights introduced in the first layers of the network throughout the training, which emphasizes that the first layers act as a sparse feature extractor (like convolutional layers in CNN).
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/sparse-tree-based-initialization-for-neural/code)
9 Replies
Loading