Keywords: Differential Privacy, ReLU Regression
Abstract: In this paper, we investigate one of the most fundamental non-convex learning problems—ReLU regression—in the Differential Privacy (DP) model. Previous studies on private ReLU regression heavily rely on stringent assumptions, such as constant-bounded norms for feature vectors and labels. We relax these assumptions to a more standard setting, where data can be i.i.d. sampled from $O(1)$-sub-Gaussian distributions. We first show that when $\varepsilon = \tilde{O}(\sqrt{\frac{1}{N}})$ and there is some public data, it is possible to achieve an upper bound of $\Tilde{O}(\frac{d^2}{N^2 \varepsilon^2})$ for the excess population risk in $(\epsilon, \delta)$-DP, where $d$ is the dimension and $N$ is the number of data samples. Moreover, we relax the requirement of $\epsilon$ and public data by proposing and analyzing a one-pass mini-batch Generalized Linear Model Perceptron algorithm (DP-MBGLMtron). Additionally, using the tracing attack argument technique, we demonstrate that the minimax rate of the estimation error for $(\varepsilon, \delta)$-DP algorithms is lower bounded by $\Omega(\frac{d^2}{N^2 \varepsilon^2})$. This shows that DP-MBGLMtron achieves the optimal utility bound up to logarithmic factors. Experiments further support our theoretical results.
Latex Source Code: zip
Signed PMLR Licence Agreement: pdf
Readers: auai.org/UAI/2025/Conference, auai.org/UAI/2025/Conference/Area_Chairs, auai.org/UAI/2025/Conference/Reviewers, auai.org/UAI/2025/Conference/Submission33/Authors, auai.org/UAI/2025/Conference/Submission33/Reproducibility_Reviewers
Submission Number: 33
Loading