InfoAug: Mutual Information Informed Augmentation for Representation Learning

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: representation learning, mutual information, data augmentation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Representation learning methods utilizing the InfoNCE loss have demonstrated considerable capacity in reducing human annotation effort by training invariant neural feature extractors. Although different variants of the training objective adhere to the information maximization principle between the data and learned features, data selection and augmentation still rely on human hypotheses or engineering, which may be suboptimal. For instance, data augmentation in contrastive learning primarily focuses on color jittering, aiming to emulate real-world illumination changes. In this work, we investigate the potential of selecting training data based on their mutual information computed from real-world distributions, which, in principle, should endow the learned features with better generalization when applied in open environments. Specifically, we consider patches attached to scenes that exhibit high mutual information under natural perturbations, such as color changes and motion, as positive samples for learning with contrastive loss. We evaluate the proposed mutual-information-informed data augmentation method on several benchmarks across multiple state-of-the-art representation learning frameworks, demonstrating its effectiveness and establishing it as a promising direction for future research. The data and code will be available for further investigation.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4826
Loading