Detection-Correction Structure via General Language Model for Grammatical Error CorrectionDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: Grammatical error correction (GEC) is a task dedicated to rectifying texts with minimal edits, which can be decoupled into two components: detection and correction. However, previous works have predominantly focused on direct correction, with no prior efforts to integrate both into a single model. Moreover, the exploration of the detection-correction paradigm by large language models (LLMs) remains underdeveloped. This paper introduces an integrated detection-correction structure, named DeCoGLM, based on the General Language Model (GLM). The detection phase employs a fault-tolerant detection template, while the correction phase leverages autoregressive mask infilling for localized error correction. Through the strategic organization of input tokens and modification of attention masks, we facilitate multi-task learning within a single model. Our model demonstrates competitive performance against the state-of-the-art models on English and Chinese GEC datasets. Further experiments present the effectiveness of the detection-correction structure in LLMs, suggesting a promising direction for GEC.
Paper Type: long
Research Area: NLP Applications
Languages Studied: English, Chinese
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview