Comparing Auxiliary Tasks for Learning Representations for Reinforcement LearningDownload PDF

22 Sept 2022, 12:38 (modified: 26 Oct 2022, 14:13)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: Reinforcement learning, Representation learning, Auxiliary task, Comparison
TL;DR: This paper empirically compares common auxiliary tasks used to learn representations for reinforcement learning (RL) across diverse continuous control environments and RL algorithms.
Abstract: Learning state representations has gained steady popularity in reinforcement learning (RL) due to its potential to improve both sample efficiency and returns on many environments. A straightforward and efficient method is to generate representations with a distinct neural network trained on an auxiliary task, i.e. a task that differs from the actual RL task. While a whole range of such auxiliary tasks has been proposed in the literature, a comparison on typical continuous control benchmark environments is computationally expensive and has, to the best of our knowledge, not been performed before. This paper presents such a comparison of common auxiliary tasks, based on hundreds of agents trained with state-of-the-art off-policy RL algorithms. We compare possible improvements in both sample efficiency and returns for environments ranging from simple pendulum to a complex simulated robotics task. Our findings show that representation learning with auxiliary tasks is beneficial for environments of higher dimension and complexity, and that learning environment dynamics is preferable to predicting rewards. We believe these insights will enable other researchers to make more informed decisions on how to utilize representation learning for their specific problem.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
5 Replies