everyone
since 04 Oct 2024">EveryoneRevisionsBibTeXCC BY 4.0
Differential equations provide a dynamical perspective for understanding and designing graph neural networks (GNNs). By generalizing the discrete Ricci flow (DRF) to attributed graphs, we can leverage a new paradigm for the evolution of node features with the help of curvature. We show that in the attributed graphs, DRF guarantees a vital property: The curvature of each edge concentrates toward zero over time. This property leads to two interesting consequences: 1) graph Dirichlet energy with bilateral bounds and 2) data-independent curvature decay rate. Based on these theoretical results, we propose the Graph Neural Ricci Flow (GNRF), a novel curvature-aware continuous-depth GNN. Compared to traditional curvature-based graph learning methods, GNRF is not limited to a specific curvature definition. It computes and adjusts time-varying curvature efficiently in linear time. We also empirically illustrate the operating mechanism of GNRF and verify that it performs excellently on diverse datasets.