Keywords: Risk Prediction, Cross-Cohort, Multimodal Learning
Abstract: Clinical risk prediction plays a crucial role in early disease detection and personalized intervention. While recent models increasingly incorporate multimodal data, their development typically assumes access to large-scale, multimodal datasets and substantial computational resources. In practice, however, most clinical sites operate under resource constraints, with access limited to EHR data alone and insufficient capacity to train complicated models. This gap highlights the urgent need to democratize clinical risk prediction by enabling effective deployment in data- and resource-limited local clinical settings. In this work, we propose a cross-cohort cross-modal knowledge transfer framework that leverages the multimodal model trained on a nationwide cohort and adapts it to local cohorts with only EHR data. We focus on EHR and genetic data as representative multimodal inputs and address two key challenges. First, to mitigate the influence of noisy or less informative biological signals, we propose a novel mixture-of-aggregations design to enhance the modeling of informative and relevant genetic features. Second, to support rapid model adaptation in low-resource sites, we develop a lightweight graph-guided fine-tuning method that adapts pretrained phenotypical EHR representations to target cohorts using limited patient data.
Extensive experiments on real-world clinical data validate the effectiveness of our proposed model.
Primary Area: Machine learning for sciences (e.g. climate, health, life sciences, physics, social sciences)
Submission Number: 26561
Loading