PACE: Physics Informed Uncertainty Aware Climate Emulator

27 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Physics Informed Machine Learning, Climate Modelling
Abstract: Climate models serve as critical tools for evaluating the effects of climate change and projecting future climate scenarios. However, the reliance on numerical simulations of physical equations renders them computationally intensive and inefficient. While deep learning methodologies have made significant progress in weather forecasting, they are still unstable for climate emulation tasks. Here, we propose PACE, a lightweight 684K parameter Physics Informed Uncertainty Aware Climate Emulator. PACE emulates temperature and precipitation stably for 86 years while only being trained on emissions data. We incorporate a fundamental physical law of advection-diffusion in PACE accounting for boundary conditions and empirically estimating the diffusion co-efficient and flow velocities from concentrations data. PACE has been trained on 15 climate models provided by ClimateSet outperforming baselines across most of the climate models and advancing a new state of the art in a climate diagnostic task.
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8434
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview