Keywords: Generative modelling, finite elements, gradient flow, persistent training
Abstract: This paper proposes a new theoretical lens to view Wasserstein generative adversarial networks (WGANs). To minimize the Wasserstein-1 distance between the true data distribution and our estimate of it, we derive a distribution-dependent ordinary differential equation (ODE), which represents the gradient flow of the Wasserstein-1 loss, and show that a forward Euler discretization of the ODE converges. This inspires a new class of generative models that naturally integrates persistent training (which we call W1-FE). When persistent training is turned off, we prove that W1-FE reduces to WGAN. When we intensify persistent training appropriately, W1-FE is shown to outperform WGAN in training experiments from low to high dimensions, in terms of both convergence speed and training results.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1162
Loading