Recognizing Profile Faces by Imagining Frontal ViewDownload PDF

03 Feb 2020OpenReview Archive Direct UploadReaders: Everyone
Abstract: Extreme pose variation is one of the key obstacles to accurate face recognition in practice. Compared with current techniques for pose-invariant face recognition, which either expect pose invariance from hand-crafted features or data-driven deep learning solutions, or first normalize profile face images to frontal pose before feature extraction, we argue that it is more desirable to perform both tasks jointly to allow them to benefit from each other. To this end, we propose a Pose-Invariant Model (PIM) for face recognition in the wild, with three distinct novelties. First, PIM is a novel and unified deep architecture, containing a Face Frontalization sub-Net (FFN) and a Discriminative Learning sub-Net (DLN), which are jointly learned from end to end. Second, FFN is a well-designed dual-pathGenerative Adversarial Network (GAN) which simultaneously perceives global structures and local details, incorporating an unsupervised crossdomain adversarial training and a “learning to learn” strategy using siamese discriminator with dynamic convolution for high-fidelity and identity-preserving frontal view synthesis. Third, DLN is a generic Convolutional Neural Network (CNN) for face recognition with our enforced cross-entropy optimization strategy for learning discriminative yet generalized feature representations with large intra-class affinity and inter-class separability. Qualitative and quantitative experiments on both controlled and in-the-wild benchmark datasets demonstrate the superiority of the proposed model over the state-of-the-arts. The complete source code, trained models and online demo of this work will be released to facilitate future research on pose-invariant face recognition in the wild.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview