Evaluating the Impact of Medical Image Reconstruction on Downstream AI Fairness and Performance

03 Dec 2025 (modified: 15 Dec 2025)MIDL 2026 Validation Papers SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Fairness, Image Reconstruction, GANs, Diffusion Models
Abstract: AI-based image reconstruction models are increasingly deployed in clinical workflows to improve image quality from noisy data, such as low-dose X-rays or accelerated MRI scans. However, these models are typically evaluated using pixel-level metrics like PSNR, leaving their impact on downstream diagnostic performance and fairness unclear. We introduce a scalable evaluation framework that applies reconstruction and diagnostic AI models in tandem, which we apply to two tasks (classification, segmentation), three reconstruction approaches (U-Net, GAN, diffusion), and two data types (X-ray, MRI) to assess the potential downstream implications of reconstruction. We find that conventional reconstruction metrics poorly track task performance, where diagnostic accuracy remains largely stable even as reconstruction PSNR declines with increasing image noise. Fairness metrics exhibit greater variability, with reconstruction sometimes amplifying demographic biases, particularly regarding patient sex. However, the overall magnitude of this additional bias is modest compared to the inherent biases already present in diagnostic models. To explore potential bias mitigation, we adapt three strategies from classification literature to the reconstruction setting, but observe limited efficacy. Overall, our findings emphasize the importance of holistic performance and fairness assessments throughout the entire medical imaging workflow, especially as generative reconstruction models are increasingly deployed.
Primary Subject Area: Image Acquisition and Reconstruction
Secondary Subject Area: Fairness and Bias
Registration Requirement: Yes
Reproducibility: https://github.com/lotterlab/reconstruction_evaluation
Read CFP & Author Instructions: Yes
Originality Policy: Yes
Single-blind & Not Under Review Elsewhere: Yes
LLM Policy: Yes
Submission Number: 37
Loading