FiD-ICL: A Fusion-in-Decoder Approach for Efficient In-Context LearningDownload PDF

20 Dec 2022 (modified: 05 Jun 2023)OpenReview Anonymous Preprint Blind SubmissionReaders: Everyone
Keywords: few-shot learning, in-context learning, fusion-in-decoder
Abstract: Large pre-trained models are capable of few-shot in-context learning (ICL), i.e., performing a new task by prepending a few demonstrations before the test input. However, the concatenated demonstrations are often excessively long and induce additional computation. Inspired by fusion-in-decoder (FiD) models which efficiently aggregate more passages and thus outperforms concatenation-based models in open-domain QA, we hypothesize that similar techniques can be applied to improve the efficiency and end-task performance of ICL. To verify this, we present a comprehensive study on applying three fusion methods—concatenation-based (early fusion), FiD (intermediate), and ensemble-based (late)—to ICL. We adopt a meta-learning setup where a model is first trained to perform ICL on a mixture of tasks using one selected fusion method, then evaluated on held-out tasks for ICL. Results on 11 held-out tasks show that FiD-ICL matches or outperforms the other two fusion methods. Additionally, we show that FiD-ICL (1) is 10x faster at inference time compared to concat-based and ensemble-based ICL, as we can easily pre-compute the representations of in-context examples and reuse them; (2) enables scaling up to meta-training 3B-sized models, which would fail for concat-based ICL.
TL;DR: Fusion-in-decoder ICL outperforms concatenation-based ICL and ensemble-based ICL while being more computationally efficient.
0 Replies

Loading