Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining

Published: 24 Apr 2023, Last Modified: 21 Jun 2023ICML 2023 PosterEveryoneRevisions
Abstract: Mainstream 3D representation learning approaches are built upon contrastive or generative modeling pretext tasks, where great improvements in performance on various downstream tasks have been achieved. However, we find these two paradigms have different characteristics: (i) contrastive models are data-hungry that suffer from a representation over-fitting issue; (ii) generative models have a data filling issue that shows inferior data scaling capacity compared to contrastive models. This motivates us to learn 3D representations by sharing the merits of both paradigms, which is non-trivial due to the pattern difference between the two paradigms. In this paper, we propose contrast with reconstruct (ReCon) that unifies these two paradigms. ReCon is trained to learn from both generative modeling teachers and cross-modal contrastive teachers through ensemble distillation, where the generative student is used to guide the contrastive student. An encoder-decoder style ReCon-block is proposed that transfers knowledge through cross attention with stop-gradient, which avoids pretraining over-fitting and pattern difference issues. ReCon achieves a new state-of-the-art in 3D representation learning, e.g., 91.26% accuracy on ScanObjectNN. Codes have been released at
Submission Number: 507