Keywords: performative prediction, performativity, causal identifiability, supervised learning, domain adaptation, concept shift, social impact
Abstract: Predictions about people, such as their expected educational achievement or their credit risk, can be performative and shape the outcome that they are designed to predict. Understanding the causal effect of predictions on the eventual outcomes is crucial for foreseeing the implications of future predictive models and selecting which models to deploy. However, this causal estimation task poses unique challenges: model predictions are usually deterministic functions of input features and highly correlated with outcomes, which can make the causal effects of predictions on outcomes impossible to disentangle from the direct effect of the covariates. We study this problem through the lens of causal identifiability. Despite the hardness of this problem in full generality, we highlight three natural scenarios where the causal effect of predictions can be identified from observational data: randomization in predictions, overparameterization of the predictive model deployed during data collection, and discrete prediction outputs. Empirically we show that given our identifiability conditions hold, standard variants of supervised learning that predict from predictions by treating the prediction as an input feature can find transferable functional relationships that allow for conclusions about newly deployed predictive models. These positive results fundamentally rely on model predictions being recorded during data collection, bringing forward the importance of rethinking standard data collection practices to enable progress towards a better understanding of social outcomes and performative feedback loops.
TL;DR: We study conditions under which the causal effect of performative predictions can be identified from observational data
Supplementary Material: zip
21 Replies
Loading