CPPO: Continual Learning for Reinforcement Learning with Human Feedback

Published: 16 Jan 2024, Last Modified: 08 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: lifelong learning, reinforcement learning, human feedback, proximal policy optimization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a new method to continually learn from human preferences based on proximal policy optimization, in which sample-wise weights are introduced to adjust policy learning and knowledge retention.
Abstract: The approach of Reinforcement Learning from Human Feedback (RLHF) is widely used for enhancing pre-trained Language Models (LM), enabling them to better align with human preferences. Existing RLHF-based LMs however require complete retraining whenever new queries or feedback are introduced, as human preferences may differ across different domains or topics. LM retraining is often impracticable in most real-world scenarios, due to the substantial time and computational costs involved, as well as data privacy concerns. To address this limitation, we propose Continual Proximal Policy Optimization (CPPO), a novel method that is able to continually align LM with dynamic human preferences. Specifically, CPPO adopts a weighting strategy to decide which samples should be utilized for enhancing policy learning and which should be used for solidifying past experiences. This seeks a good trade-off between policy learning and knowledge retention. Our experimental results show that CPPO outperforms strong Continuous learning (CL) baselines when it comes to consistently aligning with human preferences. Furthermore, compared to PPO, CPPO offers more efficient and stable learning in non-continual scenarios.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: transfer learning, meta learning, and lifelong learning
Submission Number: 5209
Loading