Online Billion-Scale Recommender Systems with Macro Graph Neural Networks

Published: 23 Jan 2024, Last Modified: 23 May 2024TheWebConf24EveryoneRevisionsBibTeX
Keywords: graph-based CTR prediction, large-scale recommendation
Abstract: Predicting Click-Through Rate (CTR) in billion-scale recommender systems poses a long-standing challenge for Graph Neural Networks (GNNs) due to the overwhelming computational complexity involved in aggregating billions of neighbors. To tackle this, GNN-based CTR models usually sample hundreds of neighbors out of the billions to facilitate efficient online recommendations. However, sampling only a small portion of neighbors results in a severe sampling bias and the failure to encompass the full spectrum of user or item behavioral patterns. To address this challenge, we name the conventional user-item recommendation graph as "micro recommendation graph" and introduce a more suitable MAcro Recommendation Graph (MAG) for billion-scale recommendations. MAG resolves the computational complexity problems in the infrastructure by reducing the node count from billions to hundreds. Specifically, MAG groups micro nodes (users and items) with similar behavior patterns to form macro nodes. Subsequently, we introduce tailored Macro Graph Neural Networks (MacGNN) to aggregate information on a macro level and revise the embeddings of macro nodes. MacGNN has already served one of the biggest shopping platforms for two months, providing recommendations for over one billion users. Extensive offline experiments on three public benchmark datasets and an industrial dataset present that MacGNN significantly outperforms twelve CTR baselines while remaining computationally efficient. Besides, online A/B tests confirm MacGNN's superiority in billion-scale recommender systems.
Track: User Modeling and Recommendation
Submission Guidelines Scope: Yes
Submission Guidelines Blind: Yes
Submission Guidelines Format: Yes
Submission Guidelines Limit: Yes
Submission Guidelines Authorship: Yes
Student Author: No
Submission Number: 1227
Loading