MedSG-Bench: A Benchmark for Medical Image Sequences Grounding

Published: 18 Sept 2025, Last Modified: 30 Oct 2025NeurIPS 2025 Datasets and Benchmarks Track spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multimodal large language models, Visual grounding, Medical image sequences, Benchmark
TL;DR: We present MedSG-Bench, the first benchmark for medical image sequence grounding, and introduce MedSG-188K and MedSeq-Grounder to facilitate future research in medical sequencial grounding and reasoning.
Abstract: Visual grounding is essential for precise perception and reasoning in multimodal large language models (MLLMs), especially in medical imaging domains. While existing medical visual grounding benchmarks primarily focus on single-image scenarios, real-world clinical applications often involve sequential images, where accurate lesion localization across different modalities and temporal tracking of disease progression (e.g., pre- vs. post-treatment comparison) require fine-grained cross-image semantic alignment and context-aware reasoning. To remedy the underrepresentation of image sequences in existing medical visual grounding benchmarks, we propose MedSG-Bench, the first benchmark tailored for Medical Image Sequences Grounding. It comprises eight VQA-style tasks, formulated into two paradigms of the grounding tasks, including 1) Image Difference Grounding, which focuses on detecting change regions across images, and 2) Image Consistency Grounding, which emphasizes detection of consistent or shared semantics across sequential images. MedSG-Bench covers 76 public datasets, 10 medical imaging modalities, and a wide spectrum of anatomical structures and diseases, totaling 9,630 question–answer pairs. We benchmark both general-purpose MLLMs (e.g., Qwen2.5-VL) and medical-domain specialized MLLMs (e.g., HuatuoGPT-vision), observing that even the advanced models exhibit substantial limitations in medical sequential grounding tasks. To advance this field, we construct MedSG-188K, a large-scale instruction-tuning dataset tailored for sequential visual grounding, and further develop MedSeq-Grounder, an MLLM designed to facilitate future research on fine-grained understanding across medical sequential images. We release all resources on https://github.com/Yuejingkun/MedSG-Bench
Croissant File: json
Dataset URL: https://huggingface.co/datasets/MedSG-Bench/MedSG-Bench-parquet
Code URL: https://github.com/Yuejingkun/MedSG-Bench
Supplementary Material: zip
Primary Area: Datasets & Benchmarks for applications in language modeling and vision language modeling
Submission Number: 2290
Loading