Keywords: Spurious Correlation, Group Robustness, Zero Group Annotation, Distribution Shift, Out-of-Distribution Generalization
TL;DR: We provide a scheme for making trained models robust to spurious correlation with zero group annotation using environment-based validation and loss-based sampling.
Abstract: Classifiers trained with Empirical Risk Minimization (ERM) tend to rely on attributes that have high spurious correlation with the target. This can degrade the performance on underrepresented (or 'minority') groups that lack these attributes, posing significant challenges for both out-of-distribution generalization and fairness objectives. Many studies aim to enhance robustness to spurious correlation, but they sometimes depend on group annotations for training. Additionally, a common limitation in previous research is the reliance on group-annotated validation datasets for model selection. This constrains their applicability in situations where the nature of the spurious correlation is not known, or when group labels for certain spurious attributes are not available. To enhance model robustness with minimal group annotation assumptions, we propose Environment-based Validation and Loss-based Sampling (EVaLS). It uses the losses from an ERM-trained model to construct a balanced dataset of high-loss and low-loss samples, mitigating group imbalance in data. This significantly enhances robustness to group shifts when equipped with a simple post-training last layer retraining. By using environment inference methods to create diverse environments with correlation shifts, EVaLS can potentially eliminate the need for group annotation in validation data. In this context, the worst environment accuracy acts as a reliable surrogate throughout the retraining process for tuning hyperparameters and finding a model that performs well across diverse group shifts. EVaLS effectively achieves group robustness, showing that group annotation is not necessary even for validation. It is a fast, straightforward, and effective approach that reaches near-optimal worst group accuracy without needing group annotations, marking a new chapter in the robustness of trained models against spurious correlation.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12227
Loading