Sharper Bounds for Uniformly Stable Algorithms with Stationary Mixing ProcessDownload PDF

Published: 01 Feb 2023, Last Modified: 19 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Algorithmic Stability, Non-I.I.D. Learning, Generalization Error, Learning Theory
Abstract: Generalization analysis of learning algorithms often builds on a critical assumption that training examples are independently and identically distributed, which is often violated in practical problems such as time series prediction. In this paper, we use algorithmic stability to study the generalization performance of learning algorithms with $\psi$-mixing data, where the dependency between observations weakens over time. We show uniformly stable algorithms guarantee high-probability generalization bounds of the order $O(1/\sqrt{n})$ (within a logarithmic factor), where $n$ is the sample size. We apply our general result to specific algorithms including regularization schemes, stochastic gradient descent and localized iterative regularization, and develop excess population risk bounds for learning with $\psi$-mixing data. Our analysis builds on a novel moment bound for weakly-dependent random variables on a $\varphi$-mixing sequence and a novel error decomposition of generalization error.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
TL;DR: We develop stability and generalization bounds for learning with mixing sequences.
19 Replies