Why Less is More (Sometimes): A Theory of Data Curation

ICLR 2026 Conference Submission22045 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: data curation; LIMO (Less Is More); MIMO(More is More); synthetic data; beating scaling laws; mitigating model collapse; random matrix theory
TL;DR: We provide an exact analysis of data curation and reveal striking phenomena regarding scaling laws and also mitigating model collapse. Our results reconcile LIMO and MIMO, two different philosophies regarding data curation.
Abstract: This paper introduces a theoretical framework to resolve a central paradox in modern machine learning: When is it better to use less data? This question has become critical as classical scaling laws suggesting ``more is more'' (Sun et al., 2025) are challenged by methods like LIMO (``less is more'') and s1 (Ye et al., 2025; Muenighoff et al., 2025), which achieve superior performance with small, aggressively curated datasets. Here, we study data curation strategies where an imperfect oracle selects the training examples according to their difficulty and correctness. Our results provide exact scaling law curves for test error under both label-agnostic and label-aware curation rules, revealing when and why keeping only a subset of data can improve generalization. In contrast to classical scaling laws, we show that under certain conditions, small curated datasets can outperform full datasets, and we provide analytical conditions for this by deriving precise phase transition curves tied to data size and quality. We validate these theoretical claims with empirical results on ImageNet, confirming our predictions about when curation improves accuracy and can even mitigate model collapse. Furthermore, our framework provides a principled explanation for the contradictory curation strategies recently observed in LLM mathematical reasoning.
Primary Area: learning theory
Submission Number: 22045
Loading