Differentiable Sparsity via $D$-Gating: Simple and Versatile Structured Penalization

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Structured Sparsity, Overparametrization, Gating
Abstract: Structured sparsity regularization offers a principled way to compact neural networks, but its non-differentiability breaks compatibility with conventional stochastic gradient descent and requires either specialized optimizers or additional post-hoc pruning without formal guarantees. In this work, we propose $D$-Gating, a fully differentiable structured overparameterization that splits each group of weights into a primary weight vector and multiple scalar gating factors. We prove that any local minimum under $D$-Gating is also a local minimum using non-smooth structured $L_{2,2/D}$ penalization, and further show that the $D$-Gating objective converges at least exponentially fast to the $L_{2,2/D}$–regularized loss in the gradient flow limit. Together, our results show that $D$-Gating is theoretically equivalent to solving the original group sparsity problem, yet induces distinct learning dynamics that evolve from a non-sparse regime into sparse optimization. We validate our theory across vision, language, and tabular tasks, where $D$-Gating consistently delivers strong performance–sparsity tradeoffs and outperforms both direct optimization of structured penalties and conventional pruning baselines.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 13
Loading