Clipping Improves Adam and AdaGrad when the Noise Is Heavy-Tailed

ICLR 2025 Conference Submission1758 Authors

19 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: stochastic optimization, heavy-tailed noise, adaptive methods, gradient clipping, high-probability convergence bounds
Abstract: Methods with adaptive stepsizes, such as AdaGrad and Adam, are essential for training modern Deep Learning models, especially Large Language Models. Typically, the noise in the stochastic gradients is heavy-tailed for the later ones. Gradient clipping provably helps to achieve good high-probability convergence for such noises. However, despite the similarity between AdaGrad/Adam and Clip-SGD, the current understanding of the high-probability convergence of AdaGrad/Adam-type methods is limited in this case. In this work, we prove that AdaGrad/Adam (and their delayed version) can have provably bad high-probability convergence if the noise is heavy-tailed. We also show that gradient clipping fixes this issue, i.e., we derive new high-probability convergence bounds with polylogarithmic dependence on the confidence level for AdaGrad and Adam with clipping and with/without delay for smooth convex/non-convex stochastic optimization with heavy-tailed noise. Our empirical evaluations highlight the superiority of clipped versions of AdaGrad/Adam in handling the heavy-tailed noise.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1758
Loading