Adaptive IMLE for Few-shot Image SynthesisDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Abstract: Despite their success on large datasets, GANs have been difficult to apply in the few-shot setting, where only a limited number of training examples are provided. Due to mode collapse, GANs tend to ignore some training examples, causing overfitting to a subset of the training dataset, which is small to begin with. A recent method called Implicit Maximum Likelihood Estimation (IMLE) is an alternative to GAN that tries to address this issue. It uses the same kind of generators as GANs but trains it with a different objective that encourages mode coverage. However, the theoretical guarantees of IMLE hold under restrictive conditions, such as the requirement for the optimal likelihood at all data points to be the same. In this paper, we present a more generalized formulation of IMLE which includes the original formulation as a special case, and we prove that the theoretical guarantees hold under weaker conditions. Using this generalized formulation, we further derive a new algorithm, which we dub Adaptive IMLE, which can adapt to the varying difficulty of different training examples. We demonstrate on multiple few-shot image synthesis datasets that our method significantly outperforms existing methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Generative models
Supplementary Material: zip
23 Replies

Loading