Robust Transfer Learning Based on Minimax PrincipleDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Transfer Learning, Minimax Principle, Robustness
Abstract: The similarity between target and source tasks is a crucial quantity for theoretical analyses and algorithm designs in transfer learning studies. However, this quantity is often difficult to be precisely captured. To address this issue, we make a boundedness assumption on the task similarity and then propose a mathematical framework based on the minimax principle, which minimizes the worst-case expected population risk under this assumption. Furthermore, our proposed minimax problem can be solved analytically, which provides a guideline for designing robust transfer learning models. According to the analytical expression, we interpret the influences of sample sizes, task distances, and the model dimensionality in knowledge transferring. Then, practical algorithms are developed based on the theoretical results. Finally, experiments conducted on image classification tasks show that our approaches can achieve robust and competitive accuracies under random selections of training sets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Supplementary Material: zip
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
7 Replies

Loading