Cue3D: Quantifying the Role of Image Cues in Single-Image 3D Generation

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Image-to-3D, Generative Models, Analysis
TL;DR: We present Cue3D, the first comprehensive, model-agnostic framework for quantifying the influence of individual image cues in single-image 3D generation.
Abstract: Humans and traditional computer vision methods rely on a diverse set of monocular cues to infer 3D structure from a single image, such as shading, texture, silhouette, etc. While recent deep generative models have dramatically advanced single-image 3D generation, it remains unclear which image cues these methods actually exploit. We introduce Cue3D, the first comprehensive, model-agnostic framework for quantifying the influence of individual image cues in single-image 3D generation. Our unified benchmark evaluates seven state-of-the-art methods, spanning regression-based, multi-view, and native 3D generative paradigms. By systematically perturbing cues such as shading, texture, silhouette, perspective, edges, and local continuity, we measure their impact on 3D output quality. Our analysis reveals that shape meaningfulness, not texture, dictates generalization. Geometric cues, particularly shading, are crucial for 3D generation. We further identify over-reliance on provided silhouettes and diverse sensitivities to cues such as perspective and local continuity across model families. By dissecting these dependencies, Cue3D advances our understanding of how modern 3D networks leverage classical vision cues, and offers directions for developing more transparent, robust, and controllable single-image 3D generation models.
Primary Area: Evaluation (e.g., methodology, meta studies, replicability and validity, human-in-the-loop)
Submission Number: 2070
Loading