Confounder Identification-free Causal Visual Feature LearningDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Domain Generalization, Casual Learning, Front-door criterion, Confounder identification-free
Abstract: Confounders in deep learning are in general detrimental to model's generalization where they infiltrate feature representations. Therefore, learning causal features that are free of interference from confounders is important. Most previous causal learning based approaches employ back-door criterion to mitigate the adverse effect of certain specific confounder, which require the explicit identification of confounder. However, in real scenarios, confounders are typically diverse and difficult to be identified. In this paper, we propose a novel Confounder Identification-free Causal Visual Feature Learning (CICF) method, which obviates the need for identifying confounders. CICF models the interventions among different samples based on front-door criterion, and then approximates the global-scope intervening effect upon the instance-level interventions from the perspective of optimization. In this way, we aim to find a reliable optimization direction, which avoids the intervening effects of confounders, to learn causal features. Furthermore, we uncover the relation between CICF and the popular meta-learning strategy MAML, and provide an interpretation of why MAML works from the theoretical perspective of causal learning for the first time. Thanks to the effective learning of causal features, our CICF enables models to have superior generalization capability. Extensive experiments on domain generalization benchmark datasets demonstrate the effectiveness of our CICF, which achieves the state-of-the-art performance.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
TL;DR: We propose a casual visual representation learning paradigm (CICF) for generalization without requiring to identify the existing confounders.
18 Replies

Loading