Keywords: Neural Radiance Fields, novel view synthesis, scene reconstruction, sampling, foundation model
TL;DR: We propose view-consistent sampling to regularize NeRF training, leveraging distilled features from DINOv2 model.
Abstract: Neural Radiance Fields (NeRF) has emerged as a compelling framework for scene representation and 3D recovery. To improve its performance on real-world data, depth regularizations have proven to be the most effective ones. However, depth estimation models not only require expensive 3D supervision in training, but also suffer from generalization issues. As a result, the depth estimations can be erroneous in practice, especially for outdoor unbounded scenes. In this paper, we propose to employ view-consistent distributions instead of fixed depth value estimations to regularize NeRF training. Specifically, the distribution is computed by utilizing both low-level color features and high-level distilled features from foundation models at the projected 2D pixel-locations from per-ray sampled 3D points. By sampling from the view-consistency distributions, an implicit regularization is imposed on the training of NeRF. We also propose a novel depth-pushing loss that works in conjunction with the sampling technique to jointly provide effective regularizations for eliminating the failure modes. Extensive experiments conducted on various scenes from public datasets demonstrate that our proposed method can generate significantly better novel view synthesis results than state-of-the-art NeRF variants as well as different depth regularization methods.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4702
Loading