everyone
since 04 Oct 2024">EveryoneRevisionsBibTeXCC BY 4.0
Neural Radiance Fields (NeRF) has emerged as a compelling framework for scene representation and 3D recovery. To improve its performance on real-world data, depth regularizations have proven to be the most effective ones. However, depth estimation models not only require expensive 3D supervision in training, but also suffer from generalization issues. As a result, the depth estimations can be erroneous in practice, especially for outdoor unbounded scenes. In this paper, we propose to employ view-consistent distributions instead of fixed depth value estimations to regularize NeRF training. Specifically, the distribution is computed by utilizing both low-level color features and high-level distilled features from foundation models at the projected 2D pixel-locations from per-ray sampled 3D points. By sampling from the view-consistency distributions, an implicit regularization is imposed on the training of NeRF. We also propose a novel depth-pushing loss that works in conjunction with the sampling technique to jointly provide effective regularizations for eliminating the failure modes. Extensive experiments conducted on various scenes from public datasets demonstrate that our proposed method can generate significantly better novel view synthesis results than state-of-the-art NeRF variants as well as different depth regularization methods.