A Closer Look at Time Steps is Worthy of Triple Speed-Up for Diffusion Model Training

17 Sept 2024 (modified: 14 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Diffusion Model; Efficient Training
TL;DR: Training diffusion models is always a computation-intensive task. In this paper, we introduce a novel speed-up method for diffusion model training, called SpeeD, which is based on a closer look at time steps.
Abstract: Training diffusion models is always a computation-intensive task. In this paper, we introduce a novel speed-up method for diffusion model training, called, which is based on a closer look at time steps. Our key findings are: i) Time steps can be empirically divided into acceleration, deceleration, and convergence areas based on the process increment. ii) These time steps are imbalanced, with many concentrated in the convergence area. iii) The concentrated steps provide limited benefits for diffusion training. To address this, we design an asymmetric sampling strategy that reduces the frequency of steps from the convergence area while increasing the sampling probability for steps from other areas. Additionally, we propose a weighting strategy to emphasize the importance of time steps with rapid-change process increments. As a plug-and-play and architecture-agnostic approach, SpeeD consistently achieves 3-times acceleration across various diffusion architectures, datasets, and tasks. Notably, due to its simple design, our approach significantly reduces the cost of diffusion model training with minimal overhead. Our research enables more researchers to train diffusion models at a lower cost.
Supplementary Material: zip
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1243
Loading