Combinatorial-Probabilistic Trade-Off: P-Values of Community Properties Test in the Stochastic Block ModelsDownload PDF

Published: 01 Feb 2023, Last Modified: 17 Feb 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: combinatorial inference, stochastic block models, community properties, minimax lower bound
TL;DR: We propose an inferential framework testing the general community combinatorial properties of the stochastic block model and prove the minimax lower bound of the general community property test.
Abstract: We propose an inferential framework testing the general community combinatorial properties of the stochastic block model. We aim to test the hypothesis on whether a certain community property is satisfied, e.g., whether a given set of nodes belong to the same community, and provide p-values for uncertainty quantification. Our framework is applicable to all symmetric community properties. To ease the challenges caused by the combinatorial nature of community properties, we develop a novel shadowing bootstrap method. Utilizing the symmetry, our method can find a shadowing representative of the true assignment and the number of tested assignments in the alternative is largely reduced. In theory, we introduce a combinatorial distance between two community classes and show a combinatorial-probabilistic trade-off phenomenon. Our test is honest as long as the product of the combinatorial distance between two communities and the probabilistic distance between two connection probabilities is sufficiently large. Besides, we show that such trade-off also exists in the information-theoretic lower bound. We also implement numerical experiments to show the validity of our method.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
13 Replies

Loading