Task Generalization with Stability Guarantees via Elastic Dynamical System Motion PoliciesDownload PDF

Published: 30 Aug 2023, Last Modified: 17 Oct 2023CoRL 2023 PosterReaders: Everyone
Keywords: Stable Dynamical Systems, Reactive Motion Policies, Learning from Demonstrations, Task Parametrization, Task Generalization
TL;DR: We propose a dynamical system based motion policy learning and generalization method with stability guarantees that can adapt to new task configurations without new demonstrations
Abstract: Dynamical System (DS) based Learning from Demonstration (LfD) allows learning of reactive motion policies with stability and convergence guarantees from a few trajectories. Yet, current DS learning techniques lack the flexibility to generalize to new task instances as they overlook explicit task parameters that inherently change the underlying demonstrated trajectories. In this work, we propose Elastic-DS, a novel DS learning and generalization approach that embeds task parameters into the Gaussian Mixture Model (GMM) based Linear Parameter Varying (LPV) DS formulation. Central to our approach is the Elastic-GMM, a GMM constrained to SE(3) task-relevant frames. Given a new task instance/context, the Elastic-GMM is transformed with Laplacian Editing and used to re-estimate the LPV-DS policy. Elastic-DS is compositional in nature and can be used to construct flexible multi-step tasks. We showcase its strength on a myriad of simulated and real-robot experiments while preserving desirable control-theoretic guarantees.
Student First Author: yes
Supplementary Material: zip
Instructions: I have read the instructions for authors (https://corl2023.org/instructions-for-authors/)
Website: https://sites.google.com/view/elastic-ds
Publication Agreement: pdf
Poster Spotlight Video: mp4
13 Replies