NEZHA: A Zero-sacrifice and Hyperspeed Decoding Architecture for Generative Recommendations

Published: 2025, Last Modified: 23 Jan 2026CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Generative Recommendation (GR), powered by Large Language Models (LLMs), represents a promising new paradigm for industrial recommender systems. However, their practical application is severely hindered by high inference latency, which makes them infeasible for high-throughput, real-time services and limits their overall business impact. While Speculative Decoding (SD) has been proposed to accelerate the autoregressive generation process, existing implementations introduce new bottlenecks: they typically require separate draft models and model-based verifiers, requiring additional training and increasing the latency overhead. In this paper, we address these challenges with NEZHA, a novel architecture that achieves hyperspeed decoding for GR systems without sacrificing recommendation quality. Specifically, NEZHA integrates a nimble autoregressive draft head directly into the primary model, enabling efficient self-drafting. This design, combined with a specialized input prompt structure, preserves the integrity of sequence-to-sequence generation. Furthermore, to tackle the critical problem of hallucination, a major source of performance degradation, we introduce an efficient, model-free verifier based on a hash set. We demonstrate the effectiveness of NEZHA through extensive experiments on public datasets and have successfully deployed the system on Taobao since October 2025, driving the billion-level advertising revenue and serving hundreds of millions of daily active users.
Loading