CoLA: Compute-Efficient Pre-Training of LLMs via Low-Rank Activation

ACL ARR 2025 May Submission4082 Authors

19 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: The *full-size* MLPs and the projection layers in attention introduce tremendous model sizes of large language models (LLMs), imposing extremely demanding needs of computational resources in the pre-training stage. However, we empirically observe that the activations of pre-trained LLMs exhibit low-rank property. Motivated by such observations, we propose **CoLA** and its memory-efficient implementation, **CoLA-M**, to replace these full-size layers with compute-efficient **auto-encoders** that naturally enforce low-rank activations throughout training. This fundamental architectural change eliminates the activation redundancy and significantly boosts model capacity and training efficiency. Experiments on LLaMA models with 60 million to 7 billion parameters show that CoLA reduces the computing cost by $\bf 2\pmb{\times}$ and improves training throughput by $\bf 1.86\pmb{\times}$ while maintaining full-rank level performance. CoLA-M further squeezes memory cost without sacrificing throughput, offering a pre-training approach with collectively superior parameter, computing, and memory efficiency. The LLMs produced are also $\bf 2\pmb{\times}$ smaller, enabling faster inference with lower memory cost on resource-constrained platforms.
Paper Type: Long
Research Area: Efficient/Low-Resource Methods for NLP
Research Area Keywords: pre-training, parameter-efficient-training, LLM Efficiency, NLP in resource-constrained settings
Contribution Types: Approaches low compute settings-efficiency
Languages Studied: English
Submission Number: 4082
Loading