Causal Identification for Complex Functional Longitudinal Studies

ICLR 2025 Conference Submission981 Authors

16 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Causal Inference, Stochastic Process, Longitudinal Data; Functional Data, Continuous Time.
TL;DR: We propose a novel causal identification framework for functional longitudinal data.
Abstract: Real-time monitoring in modern medical research introduces functional longitudinal data, characterized by continuous-time measurements of outcomes, treatments, and confounders. This complexity leads to uncountably infinite treatment-confounder feedbacks, which traditional causal inference methodologies cannot handle. Inspired by the coarsened data framework, we adopt stochastic process theory, measure theory, and net convergence to propose a nonparametric causal identification framework. This framework generalizes classical g-computation, inverse probability weighting, and doubly robust formulas, accommodating time-varying outcomes subject to mortality and censoring for functional longitudinal data. We examine our framework through Monte Carlo simulations. Our approach addresses significant gaps in current methodologies, providing a solution for functional longitudinal data and paving the way for future estimation work in this domain.
Primary Area: causal reasoning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 981
Loading