From Static Benchmarks to Dynamic Protocol: Agent-Centric Text Anomaly Detection for Evaluating LLM Reasoning

ICLR 2026 Conference Submission13789 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Agent-centric benchmark, Language model assessment, Textual anomaly detection, Adaptive benchmarks
TL;DR: We present a dynamic, agent-driven benchmark where teacher, orchestrator, and student agents generate, validate, and solve problems—enabling scalable evaluation without static datasets and exposing reasoning failures missed by standard benchmarks.
Abstract: The evaluation of large language models (LLMs) has predominantly relied on static datasets, which offer limited scalability and fail to capture the evolving reasoning capabilities of recent models. To overcome these limitations, we propose an agent-centric benchmarking paradigm that moves beyond static datasets by introducing a dynamic protocol in which autonomous agents iteratively generate, validate, and solve problems. Within this protocol, a teacher agent generates candidate problems, an orchestrator agent rigorously verifies their validity and guards against adversarial attacks, and a student agent attempts to solve the validated problems. An invalid problem is revised by the teacher agent until it passes validation. If the student correctly solves the problem, the orchestrator prompts the teacher to generate more challenging variants. Consequently, the benchmark scales in difficulty automatically as more capable agents are substituted into any role, enabling progressive evaluation of large language models without manually curated datasets. Adopting text anomaly detection as our primary evaluation format, which demands cross-sentence logical inference and resists pattern-matching shortcuts, we demonstrate that this protocol systematically exposes corner-case reasoning errors that conventional benchmarks fail to reveal. We further advocate evaluating systems along several complementary axes including cross-model pairwise performance and progress between the initial and orchestrator-finalized problems. By shifting the focus from fixed datasets to dynamic protocols, our approach offers a sustainable direction for evaluating ever-evolving language models and introduces a research agenda centered on the co-evolution of agent-centric benchmarks.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Submission Number: 13789
Loading