LLM-Assisted Static Analysis for Detecting Security Vulnerabilities

ICLR 2025 Conference Submission6217 Authors

26 Sept 2024 (modified: 02 Dec 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Neuro-Symbolic, Program Analysis, Security Vulnerability, LLM
TL;DR: We present IRIS, a static analysis tool assisted by LLM, that outperforms existing static analysis tools on whole-repository vulnerability detection
Abstract: Software is prone to security vulnerabilities. Program analysis tools to detect them have limited effectiveness in practice due to their reliance on human labeled specifications. Large language models (or LLMs) have shown impressive code generation capabilities but they cannot do complex reasoning over code to detect such vulnerabilities especially since this task requires whole-repository analysis. We propose IRIS, a neuro-symbolic approach that systematically combines LLMs with static analysis to perform whole-repository reasoning for security vulnerability detection. Specifically, IRIS leverages LLMs to infer taint specifications and perform contextual analysis, alleviating needs for human specifications and inspection. For evaluation, we curate a new dataset, CWE-Bench-Java, comprising 120 manually validated security vulnerabilities in real-world Java projects. A state-of-the-art static analysis tool CodeQL detects only 27 of these vulnerabilities whereas IRIS with GPT-4 detects 55 (+28) and improves upon CodeQL's average false discovery rate by 5% points. Furthermore, IRIS identifies 6 previously unknown vulnerabilities which cannot be found by existing tools.
Supplementary Material: zip
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6217
Loading