Temp-SCONE: A Novel Out-of-Distribution Detection and Domain Generalization Framework for Wild Data with Temporal Shift

Published: 29 Sept 2025, Last Modified: 24 Oct 2025NeurIPS 2025 - Reliable ML WorkshopEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Reliable open world learning, Out-of-Distribution Detection, Domain Generalization, Temporal Shift
Abstract: Open-world learning (OWL) requires models that can adapt to evolving environments while reliably detecting out-of-distribution (OOD) inputs. Existing approaches, such as SCONE, achieve robustness to covariate and semantic shifts but assume static environments, leading to degraded performance in dynamic domains. In this paper, we propose Temp-SCONE, a temporally-consistent extension of SCONE designed to handle temporal shifts in dynamic environments. Temp-SCONE introduces a confidence-driven regularization loss based on Average Thresholded Confidence (ATC), penalizing instability in predictions across time steps while preserving SCONE’s energy-margin separation. Experiments on dynamic datasets demonstrate that Temp-SCONE significantly improves robustness under temporal drift, yielding higher corrupted-data accuracy and more reliable OOD detection compared to SCONE. On distinct datasets without temporal continuity, Temp-SCONE maintains comparable performance, highlighting the importance and limitations of temporal regularization. Our theoretical insights on temporal stability and generalization error further establish Temp-SCONE as a step toward reliable OWL in evolving dynamic environments.
Submission Number: 174
Loading