Unsupervised Adaptation for Fairness under Covariate ShiftDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Out of Distribution, Fairness, Unsupervised, Adaptation
TL;DR: We propose an unsupervised adaptation algorithm to address fairness under covariate shift. Our proposed objective involves the standard training loss along with a novel min-max entropy formulation to handle shift and a wasserstein loss for fairness.
Abstract: Training fair models typically involves optimizing a composite objective accounting for both prediction accuracy and some fairness measure. However, due to a shift in the distribution of the covariates at test time, the learnt fairness tradeoffs may no longer be valid, which we verify experimentally. To address this, we consider an unsupervised adaptation problem of training fair classifiers when only a small set of unlabeled test samples is available along with a large labeled training set. We propose a novel modification to the traditional composite objective by adding a weighted entropy objective on the unlabeled test dataset. This involves a min-max optimization where weights are optimized to mimic the importance weighting ratios followed by classifier optimization. We demonstrate that our weighted entropy objective provides an upper bound on the standard importance sampled training objective common in covariate shift formulations under some mild conditions. Experimentally, we demonstrate that Wasserstein distance based penalty for representation matching across protected sub groups together with the above loss outperforms existing baselines. Our method achieves the best accuracy-equalized odds tradeoff under the covariate shift setup. We find that, for the same accuracy, we get upto 2x improvement in equalized odds on notable benchmarks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
4 Replies

Loading