Pseudoinverse-Guided Diffusion Models for Inverse ProblemsDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: diffusion models, inverse problems
TL;DR: We introduce pseudoinverse guidance, an approach to solve inverse problems with generative diffusion models.
Abstract: Diffusion models have become competitive candidates for solving various inverse problems. Models trained for specific inverse problems work well but are limited to their particular use cases, whereas methods that use problem-agnostic models are general but often perform worse empirically. To address this dilemma, we introduce Pseudoinverse-guided Diffusion Models ($\Pi$GDM), an approach that uses problem-agnostic models to close the gap in performance. $\Pi$GDM directly estimates conditional scores from the measurement model of the inverse problem without additional training. It can address inverse problems with noisy, non-linear, or even non-differentiable measurements, in contrast to many existing approaches that are limited to noiseless linear ones. We illustrate the empirical effectiveness of $\Pi$GDM on several image restoration tasks, including super-resolution, inpainting and JPEG restoration. On ImageNet, $\Pi$GDM is competitive with state-of-the-art diffusion models trained on specific tasks, and is the first to achieve this with problem-agnostic diffusion models. $\Pi$GDM can also solve a wider set of inverse problems where the measurement processes are composed of several simpler ones.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Generative models
13 Replies