Support vector machines and linear regression coincide with very high-dimensional featuresDownload PDF

May 21, 2021 (edited Jan 21, 2022)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: support vector machines, high-dimensional statistics, interpolation, least squares regression
  • TL;DR: We prove that SVMs and OLS give the same hypotheses only when in very high dimensional settings and show empirically that this is universal across a broad class of distributions.
  • Abstract: The support vector machine (SVM) and minimum Euclidean norm least squares regression are two fundamentally different approaches to fitting linear models, but they have recently been connected in models for very high-dimensional data through a phenomenon of support vector proliferation, where every training example used to fit an SVM becomes a support vector. In this paper, we explore the generality of this phenomenon and make the following contributions. First, we prove a super-linear lower bound on the dimension (in terms of sample size) required for support vector proliferation in independent feature models, matching the upper bounds from previous works. We further identify a sharp phase transition in Gaussian feature models, bound the width of this transition, and give experimental support for its universality. Finally, we hypothesize that this phase transition occurs only in much higher-dimensional settings in the $\ell_1$ variant of the SVM, and we present a new geometric characterization of the problem that may elucidate this phenomenon for the general $\ell_p$ case.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
  • Code: https://github.com/scO0rpion/SVM-Proliferation-NIPS2021
15 Replies

Loading