Learning to Reach Goals via Diffusion

23 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: Goal-conditioned reinforcement learning, Offline reinforcement learning, Diffusion modeling
TL;DR: Learn goal-conditioned policies by diffusing away from goals and reversing this diffusion
Abstract: Diffusion models are a powerful class of generative models capable of mapping random noise in high-dimensional spaces to a target manifold through iterative denoising. In this work, we present a novel perspective on goal-conditioned reinforcement learning by framing it within the context of diffusion modeling. Analogous to the diffusion process, where Gaussian noise is used to create random trajectories that walk away from the data manifold, we construct trajectories that move away from potential goal states. We then learn a goal-conditioned policy analogous to the score function. This approach, which we call Merlin, can reach predefined or novel goals from an arbitrary initial state without learning a separate value function. We consider three choices for the noise model to replace Gaussian noise in diffusion - reverse play from the buffer, reverse dynamics model, and a novel non-parametric approach. We theoretically justify our approach and validate it on offline goal-reaching tasks. Empirical results are competitive with state-of-the-art methods, which suggests this perspective on diffusion for RL is a simple, scalable, and effective direction for sequential decision-making.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8484
Loading