Beyond Directed Acyclic Computation Graph with Cyclic Neural Network

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Artificial Intelligence, Neural Network, Cyclic Computation
Abstract: This paper investigates a fundamental yet overlooked design principle of artificial neural networks (ANN): We do not need to build ANNs layer-by-layer sequentially to guarantee the Directed Acyclic Graph (DAG) property. Inspired by biological intelligence, where neurons form a complex, graph-structured network, we introduce the transformative Cyclic Neural Networks (Cyclic NN). It emulates biological neural systems' flexible and dynamic graph nature, allowing neuron connections in any graph-like structure, including cycles. This offers greater flexibility compared to the DAG structure of current ANNs. We further develop the Graph Over Multi-layer Perceptron, the first detailed model based on this new design paradigm. We experimentally validate the advantages of Cyclic NN on widely tested datasets in most generalized cases, demonstrating its superiority over current layer-by-layer DAG neural networks. With the support of Cyclic NN, the Forward-Forward training algorithm also firstly outperforms the current Back-Propagation algorithm. This research illustrates a transformative ANN design paradigm, a significant departure from current ANN designs, potentially leading to more biologically similar ANNs.
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12534
Loading