Beyond Standardization – Putting the Normality in Normalization

ICLR 2025 Conference Submission12924 Authors

28 Sept 2024 (modified: 28 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: mutual information game, power transform, noise robustness, information theory
Abstract: The normal distribution plays a central role in information theory – it is at the same time the best-case signal and worst-case noise distribution, has the greatest representational capacity of any distribution, and offers an equivalence between uncorrelatedness and independence for joint distributions. Accounting for the mean and variance of activations throughout the layers of deep neural networks has had a significant effect on facilitating their effective training, but seldom has a prescription for precisely what distribution these activations should take, and how this might be achieved, been offered. Motivated by the information-theoretic properties of the normal distribution, we address this question and concurrently present normality normalization: a novel normalization layer which encourages normality in the feature representations of neural networks using the power transform and employs additive Gaussian noise during training. Our experiments comprehensively demonstrate the effectiveness of normality normalization, in regards to its generalization performance on an array of widely used model and dataset combinations, its strong performance across various common factors of variation such as model width, depth, and training minibatch size, its suitability for usage wherever existing normalization layers are conventionally used, and as a means to improving model robustness to random perturbations.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12924
Loading