Exploiting the Experts: Unauthorized Compression in MoE-LLMs

Published: 27 Oct 2025, Last Modified: 27 Oct 2025NeurIPS Lock-LLM Workshop 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Mixture-of-Experts, MoE, Large Language Models, LLMs, Active learning, fine-tuning, Model stealing extraction, Pruning, Un-Compressible, Un-Finetunable LLM, Knowledge retention, prunability-resistance
Abstract: Mixture-of-Experts (MoE) architectures are increasingly adopted in large language models (LLMs) for their scalability and efficiency. However, their modular structure introduces a unique vulnerability: adversaries can attempt to compress or repurpose models by pruning experts and cheaply fine-tuning the remainder, effectively bypassing licensing and security constraints. In this paper, we systematically study the prunability of MoE-LLMs under task-specific usage. We first develop an expert attribution framework that identifies the subset of experts most responsible for a given task, then evaluate the performance trade-offs of pruning and re-aligning these experts using active learning-driven fine-tuning. Our findings reveal a critical knowledge loss--recovery trade-off: while certain experts can be isolated to retain task accuracy, significant degradation occurs without targeted re-alignment. Based on this analysis, we propose defense strategies that make MoE models inherently Un-Compressible and Un-Finetunable, such as entangled expert training and selective fine-tuning protocols that resist unauthorized adaptation. By positioning expert pruning as both a threat vector and a defense target, this work highlights the dual-use nature of MoE modularity and provides the first systematic evaluation framework for secure specialization of MoE-LLMs.
Submission Number: 58
Loading