Attention boosted Individualized Regression

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Individualized regression, Vector correlation, Brain imaging data, Self-attention mechanism
Abstract: Different from classical one-model-fits-all strategy, individualized models allow parameters to vary across samples and are gaining popularity in various fields, particularly in personalized medicine. Motivated by medical imaging analysis, this paper introduces a novel individualized modeling framework for matrix-valued data that does not require additional information on sample similarity for the individualized coefficients. Under our framework, the model individualization stems from an optimal internal relation map within the samples themselves. We refer to the proposed method as Attention boosted Individualized Regression, due to its close connections with the self-attention mechanism. Therefore, our approach provides a new interpretation for attention from the perspective of individualized modeling. Comprehensive numerical experiments and real brain MRI analysis using an ADNI dataset demonstrated the superior performance of our model.
Supplementary Material: zip
Primary Area: Machine learning for healthcare
Submission Number: 14300
Loading