Precise Asymptotics and Refined Regret of Variance-Aware UCB

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 spotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: bandit learning; online learning; variance-aware decision making
Abstract: In this paper, we study the behavior of the Upper Confidence Bound-Variance (UCB-V) algorithm for the Multi-Armed Bandit (MAB) problems, a variant of the canonical Upper Confidence Bound (UCB) algorithm that incorporates variance estimates into its decision-making process. More precisely, we provide an asymptotic characterization of the arm-pulling rates for UCB-V, extending recent results for the canonical UCB in Kalvit and Zeevi (2021) and Khamaru and Zhang (2024). In an interesting contrast to the canonical UCB, our analysis reveals that the behavior of UCB-V can exhibit instability, meaning that the arm-pulling rates may not always be asymptotically deterministic. Besides the asymptotic characterization, we also provide non-asymptotic bounds for the arm-pulling rates in the high probability regime, offering insights into the regret analysis. As an application of this high probability result, we establish that UCB-V can achieve a more refined regret bound, previously unknown even for more complicate and advanced variance-aware online decision-making algorithms. A matching regret lower bound is also established, demonstrating the optimality of our result.
Primary Area: General machine learning (supervised, unsupervised, online, active, etc.)
Submission Number: 14589
Loading