WordCraft: An Environment for Benchmarking Commonsense AgentsDownload PDF

Published: 17 Jul 2020, Last Modified: 29 Aug 2024LaReL 2020Readers: Everyone
Abstract: The ability to quickly solve a wide range of real-world tasks requires a commonsense understanding of the world. Yet, how to best extract such knowledge from natural language corpora and integrate it with reinforcement learning (RL) agents remains an open challenge. This is partly due to the lack of lightweight simulation environments that sufficiently reflect the semantics of the real world and provide knowledge sources grounded with respect to observations in an RL environment. To enable research on benchmarking agents with commonsense knowledge, we propose WordCraft, an RL environment based on LittleAlchemy2. This environment is small and fast to run, but built upon entities and relations inspired by real-world semantics. We evaluate several representation learning methods on this benchmarks and propose a new method for integrating knowledge graphs within an RL agent.
TL;DR: We propose a new RL environment for studying transfer of commonsense knowledge from text and propose a method for integration of knowledge graphs with RL agents.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 3 code implementations](https://www.catalyzex.com/paper/wordcraft-an-environment-for-benchmarking/code)
1 Reply

Loading